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Forest-fire models as a bridge between different paradigms in self-organized criticality

Proshun Sinha-Ray and Henrik Jeldtoft Jensen
Department of Mathematics, Imperial College, 180 Queens Gate, London SW7 2BZ, United Kingdom

~Received 25 August 1999; revised manuscript recevied 28 April 2000!

We turn the stochastic critical forest-fire model introduced by Dro¨ssel and Schwabl@Phys. Rev. Lett.69,
1629~1992!# into a completely deterministic threshold model. This model has many features in common with
sandpile and earthquake models of self-organized criticality. Our deterministic forest-fire model exhibits in
detail the same macroscopic statistical properties as the original Dro¨ssel-Schwabl model. We use the deter-
ministic model to elaborate on the relation between forest-fire, sandpile, and earthquake models.

PACS number~s!: 05.65.1b, 05.45.2a, 05.70.Jk, 64.60.Ht
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I. INTRODUCTION

In this paper, we present the forest-fire~FF! model recast
as a new deterministic, threshold model, which allows us
establish a bridge between the two main groups ofself-
organized criticality ~SOC! systems. In particular, our FF
model demonstrates that a nonconservative model can
hibit SOC even if no ‘‘marginal synchronization’’ is possib
@1#.

Several types of models of self-organized criticality ex
@2,3#. The original cellular automaton models were defin
by a deterministic and conservative updating algorithm w
thresholds~barriers to activity! and stochastic driving@4,5#.
A new variation of models was developed by Olami, Fed
and Christensen~OFC! @6# who realized that a nonconserv
tive threshold model might remain critical if driven un
formly. The OFC model is completely deterministic exce
for a random initial configuration. In both types of mode
the threshold is assumed to play a crucial role as a lo
rigidity that allows for a separation of time scales an
equally important, produces a large number of metasta
states. The dynamics take the system from one of these m
stable states to another. It is believed that separation of
scales and metastability are essential for the existenc
scale invariance in these models.

A seemingly very different type of model was develop
by Drössel and Schwabl~DS! @7#. No threshold appears ex
plicitly in this model and the separation of time scales is
in by hand by tuning the rates of two stochastic proces
that act as driving forces for the model. The DS FF is defin
on a d-dimensional periodic square lattice. Empty sites
turned into ‘‘trees’’ with a probabilityp per site in every
time step. A tree can catch fire stochastically when hit
‘‘lightning,’’ with probability f each time step, or determin
istically when a neighboring site is on fire. The model
found to be critical in the limitp→0 together withf /p→0.
This model is a generalization of a model first suggested
Bak, Chen, and Tang~BCT! @8#, which is identical to the DS
model except that it does not contain the stochastic igni
by lightning. The BCT system is not critical in less tha
three dimensions, see@9–11#. A continuous variable, uni-
formly driven deterministic version@12# also shows regula
behavior for low values ofp @13#. Thus the introduction of
the stochastic-lightning mechanism appeared to be ne
sary, at least in two dimensions, for the model to beh
PRE 621063-651X/2000/62~3!/3215~4!/$15.00
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critically. A useful review can be found in@14#.
In the present paper, we describe a transformation of

stochastic DS forest-fire model into a fully determinis
threshold system. This model is an extension of the rece
introduced autoignition forest fire, a simple variation on t
DS model@15#. As in that model, we find that all macro
scopic statistical measures of the system are preserved.
cifically, we show that the three models have the same
ponent for the probability density describing clusters of tre
similar probability densities of tree ages and, probably m
unexpected, almost the same power spectrum for the num
of trees on the lattice as a function of time. This latter
surprising, since even a small stochastic element in an up
ing algorithm is known to be capable of altering the pow
spectrum in a significant way@17#. We use characteristics o
the new model to reveal links between the Bak, Tang, a
Weisenfeld~BTW!, OFC, and FF models of SOC hithert
unseen.

II. DEFINITION OF MODEL

The SOC FF can be recast into an autoignition mod
This model is identical to the DS model, except that t
spontaneous ignition probabilityf is replaced by an autoigni
tion mechanism by which trees ignite automatically wh
their ageT after inception reaches a valueTmax. The in-
crease inT is a uniform drive in the system. ChoosingTmax
suitably with respect top gives a system with exactly th
same behavior and statistical properties as the DS m
@15#. Thus one stochastic driving process has been remo
and a threshold introduced, while maintaining the SOC st
this model also displays explicitly the relationship betwe
threshold dynamics and the separation of time scales so
essary for the SOC state.

We have found that the autoignition model can be turn
into a completely deterministic critical model by eliminatin
the stochastic growth mechanism. The deterministic mo
~which we shall call the regen FF! is defined again on a
periodic 2d lattice, of linear sizeL. Each cell is given an
integer parameterT that increases by one each time step.
T.0, the cell is said to be occupied, otherwise it is emp
~or regenerating!. The initial configuration is a random dis
tribution of T values and fires. Fires spread through near
neighbors and the autoignition mechanism is again opera
so that a tree catches fire when itsT5Tmax. However, in this
3215 ©2000 The American Physical Society
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3216 PRE 62PROSHUN SINHA-RAY AND HENRIK JELDTOFT JENSEN
model when a tree catches fire the result is a decremen
Tregen from its T value. Note that whenTregen,Tmax, a cell
may still be occupied after it has been ignited. The para
etersTmax andTregen can be thought of as having a qualit
tively reciprocal relationship withf and p, respectively,~in
terms of the average ‘‘waiting time’’ for spontaneous ign
tion and tree regrowth!, though this is less straightforward i
the latter case because trees are not always burned dow
fire. It is evident thatTregen also sets, and allows direct con
trol of, the degree of dissipation of theT parameter in the
system.

III. SIMULATION RESULTS

We now turn to a comparison between the statistical pr
erties of the stochastic DS FF and the entirely determini
regen model, with reference to the partly deterministic au
gnition model.

First we consider the probability densityp(s) of the tree
clusters sizes@18# simulated for different parameters for th
different models. It is well known that the correlation leng
in the DS model@as measured by the cutoffsc in p(s)#
increases as the critical point is approached by decreasinp,
f, and f /p @7#. There is a corresponding increase in t
power-law regime for the cluster distribution in the autoig
tion model asp is decreased andTmax is increased@15#. The
scaling behavior of the cutoffsc is difficult to ascertain due
to the limited range of data available, but seems to be of
form ln(Sc);pTmax, although we cannot exclude an alg
braic dependence of the formsc;(pTmax)

a, with a.6. Fig-
ure 1 shows scaling plots for the regen model, and we
that here too the cutoffsc scales with increasing ratio,t
5Tmax/Tregen. Note that the correlation length is very se
sitive to the numerical value oft as compared to its depen
dence onf /p in the DS FF, and thus only a limited range
t is covered. For largert ~as with small f /p), the larger
correlation length means that the lattice starts to beco

FIG. 1. Scaling plots of tree-cluster distributions for reg
model (L51000): Tmax5200 and t5Tmax/Tregen50.875,1.0;
Tmax51000 andt51.1; Tmax520 000 andt51.2. Inset: Corre-
sponding scaling of cutoff witht increasing left to right~dotted! and
sample distribution for DS model withp50.001, f /p50.01 for
comparison~solid!.
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saturated with trees, reflected by distortion of the cluster s
distribution, and the system size required to accomodate
becomes prohibitive. Nevertheless the covered range oft val-
ues corresponds to a wide range for the cutoffsc as seen in
Fig. 1.

We have approximately ln(sc);Tmax though again the
relation may be algebraic. The conclusion is that all th
models approach a critical state described by thesamepower
law p(s);s2t with t.2.04 that within numerical accurac
agrees with previous simulation results@16,7#.

Note that the regen model, being fully deterministic, is
course strictly periodic; but this ergodicity period~propor-
tional to the total volume of phase space,Ld(Tmax1Tregen)) is
extremely long and furthermore diverges with increas
Tmax.

Let us now turn to the temporal characteristics of t
models. In Fig. 2, we show that the probability distributio
of the ages of the trees has a very similar form for all th
models.

All are broad and exponential in character. Since it is
microscopic single-site property, it is not surprising th
there is some variation between the models.

The DS FF exhibits a cutoff in the age distribution that
nearly as sharp as the cutoff in the two threshold mod
This shows that the stochastic ignition process in the
model, characterized by the lightning probabilityf, can be
effectively replaced by the deterministic age threshold.

The collective temporal behavior is represented by
power spectrum of the time variation of the total number
trees on the lattice. In Fig. 3, these power spectra are sh
for the DS and regen models~again, the power spectrum fo
the autoignition model is nearly identical!.

Our most surprising result is that the deterministic reg
eration model has nearly the same power spectrum as the
other models, particularly in the light of the differences
the age profiles above.

The equivalence between the three models allows u
think of the probabilistic growth and lightning in the DS F
model as effectively acting as thresholds. Qualitatively o

FIG. 2. Age profiles for DS (p50.001, f /p50.01, plotted with
a Tmax of 4000 for clarity, dotted!, autoignition (p50.0001,Tmax

520 000, andTmax524 000, dashed and solid! and regen (Tmax

524 000, t51.2, dotted-dashed! models. AllL51000.
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can readily see that the probabilistic nature of the growth
the lightning can be interpreted as a kind of rigidity. Name
an empty site has a rigidity against being turned into a t
described by 1/p. A tree has rigidity against fire described b
the fact that a tree only catches fire if nearest neighbor
fire or when hit by lightning.

IV. DRIVING AND DISSIPATION: AN INTERPRETATION

The change in the mechanism for the renewal of the fo
~from a probability for growth to a time for regeneration! and
the resultant sandpilelike picture allows the identification
p with a dissipation parameter~in terms of the subtraction o
Tregen on ignition! rather than as a driving parameter~see
also @19#!. This is quite contrary to the normally held an
most obvious view—for the DS FF—thatp is a driving pa-
rameter~creating trees in the system!, and that if anything,f
controls the dissipation~the complete combustion of tree
into empty sites!. Given this, we can speculate that it may
possible to equate the physical limits for critical behavior
the BTW sandpile:

h,h/e→0

~whereh is the driving rate ande the dissipation! and, re-
calling the qualitatively reciprocal relationships betwe
f , p, Tmax, and Tregen noted earlier, the DS and rege
forest-fire models:

f , f /p→0, and 1/Tmax,Tregen/Tmax→0.

V. DISCUSSION AND CONCLUSION

We now discuss the relationship between the regen m
presented above and other SOC models.

Our regen model is similar to the deterministic mod
introduced by Chen, Bak, and Jensen@12#. The crucial dif-
ference however, is that in the previous model the ra
Tregen/Tmax — which must be decreased to move closer
the critical point and obtain scale free behavior — is effe
tively held fixed at a finite value, and hence the model d

FIG. 3. Tree-density power spectra (L51000) for DS (f /p
50.01, black! and regen (Tregen/Tmax51.0, gray! models.
d
,
e

a

st

f

el

l

o

-
s

not allow one to truly approach the critical state.
The regen model has several features in common with

sandpile and earthquake models. It is similar to both set
models in that the intrinsic dynamics is entirely determinis
and controlled by thresholds. The model is uniformly driv
~in theT parameter! like the OFC earthquake model@6#, and
moreover, our deterministic FF model is genuinely no
conservative. It is worth noting that distributing the increa
in T randomly in a limited number of portions~rather than
equally across all trees!, each time step was found to destro
the criticality as the size of the portions increased. In o
important respect, our model is more similar to the BT
sandpile model than to the OFC model. Namely, when a
suffers relaxation~a tree catches fire!, a fixed amountTregen
is subtracted from the dynamical variable of that site. T
same happens in the BTW model. In the OFC model, on
other hand, the dynamical variable of a relaxing site is re
to zero. This property has been argued to allow for a m
ginal synchronization in the model and hence to be resp
sible for the OFC model’s ability, in contrast to the BTW
model, to remain critical even in the nonconservative regi
@1#. Seen in this context, the deterministic FF model p
sented here constitutes a very interesting mix of featu
from the BTW and OFC models. Our regen FF model
nonconservative, uniformly driven, and, though the mic
scopic update does not support a marginal synchronizat
nevertheless the model does exhibit the same scale free
havior as the DS FF.

The direct link established above between the SOC
havior of the BTW, OFC, and DS FF models, each of whi
are commonly assumed to be representative of different
distinct types of SOC models, is a step toward a unificat
of the physical origins of criticality in these systems~for
related mean-field discussion, see@19#!.

The main difference between the deterministic FF mo
and the sandpile and earthquake models is that the dynam
variableT is not transported to neighboring sites when a s
relaxes and that the threshold exists only for the initiat
and not the propagation of avalanches. This difference ca
summarized as the FF model being a model of two coup
fields, fires and trees, whereas the sandpile and earthq
models contain one self-coupled field, the energy of a si

Another difference is that the thresholds of the determ
istic FF model must be tuned~to infinity! for the model to
approach the critical regime. The reason for this is that
thresholds relate directly to the rate of driving in the mod
The sandpile and earthquake models are different in that
SOC limit of slow driving can be reached without a tuning
the thresholds.

The relationship between deterministic and stocha
SOC models has been studied in the context of the B
sandpile model in a paper by Wiesenfeld, Theiler, and M
Namara@20#. They replaced the spatial randomness in
dropping of sand grains by a seeding of sand grains at
central site of the lattice only. Without a stochastic elem
in the driving, the model becomes entirely deterministic b
remainscritical. Wiesenfeld, Theiler, and McNamara the
applied a dynamical systems point of view and were able
conclude that the criticality survives due to the coexisten
of many periodic attractors that lead them to picture the cr
cal state as the union of many coexisting orbits. This pict
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does not directly apply to our deterministic FF model. Inc
menting theT value of a single tree only can only lead to
trivial dynamics. The driven site will ignite when itsT value
reachesTmax and a fire will spread through the trees spatia
connected to the driven site. When this has happened,
dynamics of the lattice reduces to the trivial oscillation of t
T value of the driven site betweenTmax-Tregen andTmax. As
mentioned before, the regen model must be driven glob
and the global drive has to be uniform.

Finally, we note that the regen model is deterministic a
critical with periodic boundary conditions. This is in contra
to deterministic versions of the BTW and OFC that beco
noncritical when periodic boundary conditions are appli
The regen model is without external stochastic driving~un-
like the DS model! and in this sense the regen model can
said to be completely self-contained in its dynamics. As
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as we know, the regen model is the only deterministic u
formly driven model that remains critical when period
boundary conditions are applied.

In summary, we have demonstrated that the stocha
Drössel-Schwabl forest-fire model can be turned into a
terministic threshold model without changing any of the c
lective statistical measures of the system in a significant w
The model illuminates greatly the relationship between d
ferent types of SOC models.
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